Influence of immunological nutrition on treatment of patients with oncological profile

  • M. O. Katrichenko National Cancer Institute of Ministry of Health of Ukraine, Kyiv
  • I. I. Lisnyi National Cancer Institute of Ministry of Health of Ukraine, Kyiv
Keywords: tumor, nutrition, nutrients, T-cells, NK-cells, treatment

Abstract

In the reviewed article, we consider epidemiological and laboratory data that confirm the protective effects of biologically active nutrients in our diet for various diseases. Along with various factors such as alcohol, smoking, nutrition plays a vital role in influencing the patient’s immune response by transforming cells or by preventing, or acceleration of malignancy. Many data suggest that immunoactive nutrients control inflammatory and precancerous reactions in immune cells. Immunoprophylaxis is usually associated with modulation of the immune response when inflamed, thereby improving clinical outcomes. Different nutrients, including glutamine, arginine, vitamins, minerals and long-chain fatty acids, are important components of immunological nutrition. Clinical studies associated with these substances show different results with minimal effect. However, some studies have shown that these nutrients may have immunomodulatory effects that can reduce the risk of developing cancer. Pre-clinical studies claim that most of these nutrients have a positive effect in the complex treatment of cancer patients. In this article, we will consider the effect of the above nutrients on the immune system in patients of oncologic profile.

Recent evidences suggest that immunological nutrition plays an important role in the development of cancer and its progression. Data from animal studies have clearly shown that the use of immunomodulatory nutrients isolated from food, by launching a cascade of immunological reactions, can detect and eliminate the tumor. Although the technology has evolved to such an extent that we can study each individual cytokine or function of the immune cell, it is difficult to demonstrate the powerful role of the immune system in preventing or treating cancer due to the complexity of the tumor cell or heterogeneity in different patients' populations. However, the study sheds light on interactions in immune responses and cancer development, prevention and therapeutic strategies that involve modulation through biologically active agents.

Downloads

Download data is not yet available.

References

Лесной И. И., Колесник Е. А., Мазанько Ю.В., Катриченко М.А., Кучин Ю. Л. Роль парентерального и энтерального клинического питания у больных онкологического профиля. Клиническая онкология. 2015 №1(17), 16–23.

Percival, S. S., Nutrition and Immunity: Balancing Diet and Immune Function // Nutr. Today. 2011, 46, 12–17.

Liu, R. H., Dietary bioactive compounds and their health implications // J. Food Sci. 2013, 78, A18–A25.

Manhart, N., Stehle, P., Nutritive aminoacids effective modulators of the immune response // ForumNutr. 2002, 56, 151–154.

McMurray, D., Cell-mediated immunity in nutritional deficiency // Prog. Food Nutr. Sci. 1983, 8, 193–228.

Gajewski, T. F., Schreiber, H., Fu, Y.-X., Innate and adaptive immunecells inthe tumor microenvironment // Nat. Immunol. 2013, 14, 1014–1022.

Cheng, P. N.-M., Lam, T.-L., Lam, W.-M., Tsui, S.-M. et al., Pegylated recombinant human arginase (rhArg-peg5, 000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion // Cancer Res. 2007, 67, 309–317.

Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S., Clark, M. A., Pegylated arginine deiminase (ADI-SS PEG20, 000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo // Cancer Res. 2002, 62, 5443–5450.

Kim, R. H., Coates, J. M., Bowles, T. L., McNerney, G. P. et al., Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis // Cancer Res. 2009, 69, 700–708.

Yoon, C.Y., Shim, Y.J., Kim, E.H., Lee, J.H. et al., Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase // Int. J. Cancer 2007, 120, 897–905.

Dillon, B. J., Prieto, V. G., Curley, S. A., Ensor, C. M. et al., Incidence and distribution of argininosuccinate synthetase deficiency in human cancers // Cancer 2004, 100, 826–833.

Ochoa, A. C., Zea, A. H., Hernandez, C., Rodriguez, P. C., Arginase, prostaglandins, andmyeloid-derived suppressor cells in renal cell carcinoma // Clinical Cancer Res. 2007, 13, 721s–726s.

Obermajer, N., Wong, J. L., Edwards, R. P., Chen, K. et al., Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling // J. Exp. Med. 2013, 210, 1433–1445. Janakiram, N. B., Rao, C. V., iNOS-selective inhibitors for cancer prevention: promise and progress // Future Med. Chem. 2012, 4, 2193–2204.

Lamas, B., Vergnaud-Gauduchon, J., Goncalves-Mendes, N., Perche, O. et al., Altered functions of natural killer cells in response to L-Arginine availability // Cell. Immunol. 2012, 280, 182–190.

Norian, L. A., Rodriguez, P. C., O’Mara, L. A., Zabaleta, J. et al., Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism // Cancer Res. 2009, 69, 3086–3094.

Oberlies, J., Watzl, C., Giese, T., Luckner, C. et al., Regulation of NK cell function by human granulocyte arginase // J. Immunol. 2009, 182, 5259–5267.

Rodriguez, P. C., Quiceno, D. G., Ochoa, A. C., L-arginine availability regulates T-lymphocyte cell-cycle progression // Blood 2007, 109, 1568–1573.

Son, J., Lyssiotis, C. A., Ying, H., Wang, X. et al., Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway // Nature 2013, 496, 101–105.

Wang, J.-B., Erickson, J.W., Fuji, R., Ramachandran, S. et al., Targeting mitochondrial glutaminase activity inhibits oncogenic transformation // Cancer Cell. 2010, 18, 207–219.

Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E. et al., Bidirectional transport of amino acids regulates mTOR and autophagy // Cell 2009, 136, 521–534.

Klimberg, V. S., Is glutamine effective in enhancing host immune response to tumors? // J. Nutr. 2005, 135, 2920S– 2920S.

Viora, M., Quaranta, M. G., Straface, E., Masella, R. et al., Redox imbalance and immune functions: opposite effects of oxidized low-density lipoproteins and N-acetylcysteine // Immunology 2001, 104, 431–438.

Klysz, D., Tai, X., Robert, P.A., Craveiro, M. et al., Glutaminedependent-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation // Sci. Signal. 2015, 8, ra97–ra97.

Quan, Z.-F., Yang, C., Li, N., Li, J.-S., Effect of glutamine on change in early postoperative intestinal permeability and its relation to systemic inflammatory response // World J. Gastroenterol. 2004, 10, 1992–1994.

Rao, R., Samak, G., Role of glutamine in protection of intestinal epithelial tight junctions // J. Epithel. Biol. Pharmacol. 2012, 5, 47–54.

Cetinbas, F., Yelken, B., Gulbas, Z., Role of glutamine administration on cellular immunity after total parenteral nutrition enriched with glutamine in patients with systemic inflammatory response syndrome // J. Crit. Care 2010, 25, 661; e661–661; e666.

O’Riordain, M. G., Fearon, K., Ross, J. A., Rogers, P. et al., Glutamine-supplemented total parenteral nutrition enhances T-lymphocyte response in surgical patients undergoing colorectal resection // Ann. Surg. 1994, 220, 212– 221.

Hopkins, F. G., Cole, S. W., A contribution to the chemistry of proteids // J. Physiol. 1901, 27, 418–428.

Sainio, E.-L., Pulkki, K., Young, S., L-Tryptophan: Biochemical, nutritional and pharmacological aspects // Amino Acids 1996, 10, 21–47.

Fallarino, F., Grohmann, U., You, S., McGrath, B. C. et al., Tryptophan catabolism generates autoimmune-preventive regulatory T cells // Transpl. Immunol. 2006, 17, 58–60.

Szczepanik, M., Melatoninandit sinfluence on immune system // J. Physiol. Pharmacol. 2007, 58, 115–124.

Metz, R., Smith, C., DuHadaway, J. B., Chandler, P. et al., IDO2 is critical for IDO1-mediated T-cell regulation and exerts a non-redundant function in inflammation // Int. Immunol. 2014, 26, 357– 367.

Manlapat, A. K., Kahler, D. J., Chandler, P. R., Munn, D. H., Mellor, A. L., Cell-autonomous control of interferon type I expression by indoleamine 2, 3-dioxygenase in regulatory CD19+dendriticcells // Eur. J. Immunol. 2007, 37, 1064–1071.

Prendergast, G., Immune escape as a fundamental trait of cancer: focus on IDO // Oncogene. 2008, 27, 3889– 3900.

Peng, Y.-P., Zhu, Y., Zhang, J.-J., Liang, W.-b. et al., Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction // BMC Cancer. 2014, 14, 738–743.

Ferdinande, L., Decaestecker, C., Verset, L., Mathieu, A. et al. Clinicopathological significance of indoleamine 2, 3dioxygenase1expression in colorectal cancer // Br. J. Cancer. 2012, 106, 141–147.

Brandacher, G., Perathoner, A., Ladurner, R., Schneeberger, S. et al., Prognostic value of indoleamine 2, 3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells // Clin. Cancer Res. 2006, 12, 1144–1151.

Calviello, G., Di Nicuolo, F., Gragnoli, S., Piccioni, E. et al., n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2inducedERK-1and-2and HIF-induction pathwa // Carcinogenesis. 2004, 25, 2303– 2310.

Clarke, R. G., Lund, E. K., Latham, P., Pinder, A. C. et al., Effect of eicosapentaenoic acid on the proliferation and incidence of apoptosis in the colorectal cell line HT29 // Lipids 1999, 34, 1287–1295.

Courtney, E., Matthews, S., Finlayson, C., DiPierro, et al., Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. // Int. J. Colorectal Dis. 2007, 22, 765–776.

Latham, P., Lund, E. K., Johnson, I. T., Dietary n-3 PUFA increases the apoptotic response to 1, 2-dimethylhydrazine, reduces mitosis and suppresses the induction of carcinogenesis in the rat colon // Carcinogenesis. 1999, 20, 645– 650.

Kantor, E. D., Lampe, J. W., Peters, U., Vaughan, T. L. et al., Longchain omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer // Nutr. Cancer. 2014, 66, 716–727.

Calder, P. C., n–3 Polyunsaturated fatty acids and inflammation: from molecular biology to the clinic // Lipids. 2003, 38, 343–352.

Published
2018-05-16
How to Cite
1.
Katrichenko MO, Lisnyi II. Influence of immunological nutrition on treatment of patients with oncological profile. prmd [Internet]. 16May2018 [cited 17Dec.2018];1(1):19-4. Available from: https://perioperative.org.ua/index.php/prtmdc/article/view/5